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Short Questions
(T1) Sundial (10 points)

The following diagram represents a sundial, where the triangle, named Gnomon, casts a shadow
on the surface, where there are markings and numbers representing important information. It
is known that this sundial is located either between the Tropic of Cancer and the Artic Circle
or between the Tropic of Capricorn and the Antartic Circle.

In the image above, the angle between the dashed and solid lines for any given time is always
equal to the longitude difference between the time shown by the sundial and the civil time
(time in your watch). For instance, the dashed line corresponding to 7h and the solid line
corresponding to 7h form an angle equal to the longitude difference between the location of this
sundial and the central meridian of the timezone.
Throughout the year, the shadow of the tip of the gnomon is always between curves A and C.
Read the following statements and indicate whether they are true or false. For each item, write a
“T” in the answer sheet if you think the statement is true and an “F” if you think the statement
is false. There is no need to explain your answers.

(a) This sundial will only function properly if it is located in the southern hemisphere.
(b) Curve A represents the trajectory of the shadow of the tip of the gnomon throughout the

winter solstice day of the hemisphere where the sundial is located.
(c) Line B represents the trajectory of the tip of the gnomon’s shadow throughout the equinoxes.
(d) The solid radial lines provide the mean local solar time.
(e) The analemma shape around the dashed line corresponding to 12h shows the position of

the tip of the gnomon’s shadow during the true solar noon at the central meridian of the
time zone throughout the year.

Solution:
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(a) True. The polar rod of the sundial faces the hemisphere that contains the south
cardinal point as the fundamental pole, so the sundial was designed for a location in
the southern hemisphere of the Earth.

(b) False. This curve represents the trajectory of the tip of the rod’s shadow throughout
the day of the summer solstice in the hemisphere in which the sundial is located.

(c) True. This straight line, which is perpendicular to the meridian line, represents
the trajectory of the tip of the rod’s shadow throughout the day of either southern
autumnal or vernal equinox.

(d) False. This set of radial lines corresponds to the true local solar time. The 12h line
coincides with north-south line, which must be the case for the true solar noon.

(e) True. The dashed lines and the solid lines form an angle corresponding to the lon-
gitude difference between the sundial and the center of the time zone. Therefore, the
dashed lines correspond to the true solar time of the center of the time zone. An
analemma shaped figure around the line that corresponds to a true local solar time
indicates the mean solar time.

(T2) Galaxy Cluster (10 points)
An astrophysical survey mapped all the galaxies in a small region of the sky, of angular diameter
∆θ “ 0.01 rad, where many galaxies seemed to be concentrated around the central area of the
image. When the positions and redshifts of all the galaxies in this cluster were measured, an
interesting distribution emerged, which is shown in the plot below.

Using these observations, estimate the total mass of the galaxy cluster and express your an-
swer in solar masses. Assume that this galaxy cluster is in dynamical equilibrium, with a
root-mean-square redshift dispersion σz “

a

xpz ´ 0.7q2y “ 0.0005. Feel free to make reason-
able approximations when considering the average velocities, masses and spatial distribution of
galaxies.
Consider that the distance to z̄ “ 0.7 in the standard cosmological model is DA “ 1500 Mpc.
Disconsider cosmological effects on the distance.

Solution:
If U and K are the total gravitational potential energy and the total kinetic energy of the
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cluster, respectively, the virial theorem says that:

U ` 2K “ 0 2.0

Let’s say that there are N galaxies of masses mi, where i “ 1, ..., N , moving with velocities
~ui “ ~vi ´ ~v0 with respect to the cluster, where ~v0 is the velocity of the cluster as a whole.
Therefore, in the cluster frame, K is given by

K “

N
ÿ

i“1

1

2
miu

2
i

As an estimation, consider that all galaxies have mass equal to the average mass xmy “

MT {N :

K “
1

2

MT

N

N
ÿ

i“1

u2
i “

1

2
MT

ÿ

u2
i

N
“

1

2
MTσ

2
v 2.0

Where σv “
a

xu2
i y is the root-mean-square galaxy speed, also known as velocity dispersion.

Notice, however, that only the dispersion in redshift is given, which translates into a radial
velocity dispersion:

σvr “ c ¨ σz “ 2.998 ˆ 108 m{s ˆ 0.0005 “ 1.499 ˆ 105 m{s 1.0

There is no penalization for students who use that σv “ cσz. For completeness of the
solution, however, we relate σv and σvr by assuming three-dimensional isotropy for velocities,
which yields σ2

v “ 3σ2
vr . K is then given by:

K “
3

2
MTσ

2
vr

The gravitational potential energy, on the other hand, is given by:

U “ ´
ÿ

i‰j

Gmimj

rij

This can be estimated in different ways. Usually, the spatial distribution of the large number
of galaxies may be approximated as uniform, so that one estimates U as homogeneous
spherical mass distribution, for which U is given by:

U “ ´
3

5

GM2
T

R
2.0

And, assuming the cluster is spherical, its radius is:

R “
DA ¨ ∆θ

2
“

1500 ˆ 106 ˆ 206265 ˆ 1.496 ˆ 1011 ˆ 10´2

2
“ 2.3143 ˆ 1023 m 1.0

Now, using the virial theorem, it is possible to calculate the total mass:
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6 ´
3

5
GM2

T

1

R
` 2 ¨

3

2
MTσ

2
vr “ 0

ñ MT “
5Rσv2

r

G

MT “
5 ˆ 3.857 ˆ 1023 ˆ p1.499 ˆ 105q2

6.67 ˆ 10´11
kg

MT « 3.9 ˆ 1044 kg “ 2.0 ˆ 1014 Md 2.0

Appendix on calculation of U : Other valid methods for estimating U include explicitly
writing the sum as:

U “ ´
1

2
G

˜

ÿ

i

mi

¸2

x
1

rij
y

U “ ´
1

2

GM2
T

R

where the factor of 1/2 comes from counting all the unique pairs, and xr´1
ij y was taken (as

an approximation) as R´1.
Or, alternatively, using dimensional analysis to argue that:

U “ ´
GM2

T

R

.

(T3) Asteroid (10 points)
A peculiar asteroid of mass m was spotted at a distance d, from a star with mass M . The
modulus of the asteroid’s velocity at the time of the observation was v “

b

GM
d , where G is the

universal gravitational constant. The distance d is much larger than the radius of the star.
For both of the following items, express your answers in terms of M , d, and physical or mathe-
matical constants.
(a) (8 points) If the asteroid is initially moving exactly towards the star, how long will it take

for it to collide with the star?

Solution: In this scenario, the asteroid would fall directly towards the star. However,
in order to simplify the calculations, it is possible to consider that the asteroid would
be in a degenerate elliptical orbit. In that case, the semi-minor axis would be infinites-
imally small and the asteroid would still practically be moving on a straight line. It is
also important to notice that the focii would virtually be at the periapsis and apapsis
points. The degenerate elliptical orbit is shown in the following figure: 2.0
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The semi-major axis of this elliptical orbit can be obtained through the following ex-
pression, where m is the mass of the asteroid:

E “
mv2

2
´

GMm

d
“ ´

GMm

2a
GMm

2d
´

GMm

d
“ ´

GMm

2a
1

2d
“

1

2a
6 d “ a 2.0

Now, it is possible to use Kepler’s third law to find an expression for the period of the
orbit:

T 2

d3
“

4π2

GM
ÝÑ T “ 2πd

c

d

GM
1.0

If the asteroid is initially moving towards the star, it sweeps area I to reach the star.
Using Kepler’s second law, it is possible to calculate how long it takes for that to
happen:

∆t

T
“

AI

ATotal
“

πab
4 ´ ab

2

πab
2.0

∆t “

ˆ

1

4
´

1

2π

˙

T

∆t “

´π

2
´ 1

¯

d

c

d

GM
1.0

Note that the radius of the star is negligible in these calculations since it is significantly
smaller than d.

(b) (2 points) If the asteroid is initially moving exactly away from the star, how long will it
take for it to collide with the star?

Solution: If the asteroid is initially moving away from the star, it sweeps areas II and
III before reaching the star. It is possible to again use Kepler’s second law to find the
time interval:
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∆t

T
“

AII ` AIII

ATotal
“

ab
2 ` πab

4 ` πab
2

πab
1.5

∆t “

ˆ

3

4
`

1

2π

˙

T

∆t “

ˆ

3π

2
` 1

˙

d

c

d

GM
0.5

(T4) White Dwarf (10 points)
The structure of a white dwarf is sustained against gravitational collapse by the pressure of
degenerate electrons, a phenomenon explained by quantum physics and related to the Pauli Ex-
clusion Principle for electrons. The equation of state of a gas made of non-relativistic degenerate
electrons is the following:

P “

ˆ

3

8π

˙2{3
h2

5me
n5{3
e ,

where ne is the number of electrons per unit volume, which can be expressed in terms of the mass
density ρ of the white dwarf using the dimensionless factor µe, the number of nucleons (protons
and neutrons) per unit electron. Also consider that the central pressure can be described by
this equation of state.
In the condition of hydrostatic equilibrium, the pressure and gravitational forces balance each
other at any distance r from the center of the star. This condition can be expressed by:

dP

dr
“ ´

GMprqρprq

r2
,

where Mprq is the mass contained in the sphere of radius r, and ρprq is the mass density of the
star at a radius r.
Assume that mp “ mn and that the density of a white dwarf is roughly uniform and the following
approximation is valid at the surface of the star:

dP

dr

ˇ

ˇ

ˇ

ˇ

r“R

« ´
Pc

R
,

where Pc is the pressure at the center of the star, and R the star radius.
(a) (6 points) The relationship between the mass M and the radius R of a white dwarf can be

written in the form

R “ a ¨ M b

Find the exponent b and determine the coefficient a in terms of physical constants and µe.

Solution: Simplifying the expression given in the problem statement:

dP

dr
“ ´

GMprqρ

r2
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At r “ R, is is possible use the approximation provided and the expression ρ “

3M{p4πR3q:

´
Pc

R
“ ´

GMt3M{p4πR3qu

R2

Pc “
3GM2

4πR4
1.5

Furthermore, electron density ne can be related to mass density as:

ρ “ µempne 1.5

Using now the equation of state:

Pc “

ˆ

3

8π

˙2{3
h2

5me

ˆ

ρ

µemp

˙5{3

“

ˆ

3

8π

˙2{3
h2

5me

ˆ

3M

4πR3µemp

˙5{3

3GM2

4πR4
“

ˆ

3

8π

˙2{3
h2

5me

ˆ

3

4πµemp

˙5{3
M5{3

R5

R “

ˆ

4π

3

˙ ˆ

3

8π

˙2{3
h2

5Gme

ˆ

3

4πµemp

˙5{3

M´1{3

Therefore:

a “

ˆ

4π

3

˙ ˆ

3

8π

˙2{3
h2

5Gme

ˆ

3

4πµemp

˙5{3

1.5

b “ ´
1

3
1.5

(b) (4 points) Using the relationship found in the previous item, estimate the radius of a white
dwarf made of fully ionized carbon (126 C) with a mass of M “ 1.0Md.

Solution: There are 2 nucleons (1 proton and 1 neutron) per unit electron for carbon,
so that µe “ 2.

1.0
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Using the expression for the radius found on the previous item:

R «

ˆ

4π

3

˙ ˆ

3

8π

˙2{3
1

5

ˆ

3

4π

˙5{3
h2

Gme

1

pµempq5{3

1

M1{3

« 1.866 ¨ 10´2 h2

Gme

1

pµempq5{3

1

M1{3

«
1.866 ˆ 10´2 ˆ

`

6.626 ˆ 10´34
˘2

6.67 ˆ 10´11 ˆ 9.11 ˆ 10´31 ˆ p2 ˆ 1.67 ˆ 10´27q
5{3

ˆ p1.988 ˆ 1030q
1{3

R « 1.44 ˆ 106 m 3.0

(T5) CMB (10 points)
The Cosmic Microwave Background (CMB) is a radiation coming from the early Universe, it is
reasonably homogeneous and isotropic and described by a black-body radiation spectrum. Its
emission spectrum today has a peak at a temperature of approximately Ttoday „ 3K, given by
COBE satellite FIRAS instrument measurements.
(a) (3 points) What is the redshift (z) at which the CMB spectrum had a peak at the infrared

wavelength of λIR „ 0.1mm?

Solution:
In order to find the redshift, we need λtoday. Since Ttoday refers to the temperature at
the emission peak, we use Wien’s law:

λtoday ¨ Ttoday “ b

λtoday « 1mm 1.0

So the redshift of the CMB, when it is emmited at the infrared spectrum (with the
values mentioned) is

z “
λtoday ´ λinfrared

λinfrared
1.0

z «
1 ´ 0.1

0.1
“ 9 1.0

.
Note: It is also possible to find Tinfrared using Wien’s law, and then use the definition
of redshift to find z, which leads to the same answer.

(b) (7 points) By assuming a spatially flat matter-dominated Universe, what is the age of the
Universe corresponding to the redshift of the previous part?

Solution:
As the Universe is assumed as composed of just matter (i.e. Ωm “ 1), so the expression
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for the age of the Universe is given, in terms of the scale factor
´

a “ 1
1`z

¯

, by

air “
1

1 ` z
“

1

1 ` 9
“ 0.1 1.0

Now, da

dt
“ Hptq ¨ aptq 1.0

And, from the first Friedmann equation for a matter-dominated universe, we know
that:

H2 “
H2

0

a3
2.0

Therefore:

da

dt
“

H0

a1.5ptq
aptq “

H0
a

aptq

6 t “

ż 0.1

0

?
a

H0
da

“
1

H0

ż 0.1

0

?
a da “

2

3 H0
a1.5|0.10 2.0

“
2 ˆ 0.11.5

3 ˆ 70

“ 3 ˆ 10´4 sMpc{km

“
3 ˆ 10´4 ˆ 3.086 ˆ 1022

1000 ˆ 86400 ˆ 365.2422

t « 0.3Gyr 1.0

Medium Questions

(T6) Cluster Photography (20 points)
An astronomer takes pictures, in the V-band, of a faint celestial target, from a place with no light
pollution. The selected target is the globular cluster Palomar 6, which has an angular diameter
of θ “ 72.02 and a uniform surface brightness in the V-band of mV “ 20.6mag{arcsec2. The
observation equipment consists of one reflector telescope, with diameter D “ 305mm and F-
ratio f{5, and a prime focus CCD with quantum efficiency η “ 80% and square pixels with size
` “ 3.80µm.
Given data:

• V-band central wavelength: λV “ 550 nm

• V-band bandwidth: ∆λV “ 88.0 nm

• Photons flux for a 0-magnitude object in the V-band:10 000 counts{nm{cm2{sq

(a) (3 points) Calculate the plate scale, the angle of sky projected per unit length of the sensor,
of the observation equipment in arcmin{mm.
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Solution:
The plate scale is simply the angular size of the image per unit length as projected at
the focal plane. Hence, for small angles,

tan θi “
`i
f

« θi 1.0

where θi is the angular size of the image, `i is the unit length, and f is the focal length
of the telescope, which is given by pD ˆ F-ratioq 0.5.

θi “
1mm

5 ˆ 305mm
“ 6.56 ˆ 10´4 rad “ 2.2541

PS « 2.25 arcmin{mm 1.5

(b) (4 points) Estimate the number of pixels np covered by the cluster image on the CCD.

Solution:
Given the plate scale, the diameter of the image on the focal plane is

dGC “
72.02

2.251 ˆ 60
“ 0.532mm 1.0

This implies that the area covered by the image is

SGC “
π

4
¨ d2GC “ 0.223mm2

which can be divided by the area of a single pixel to estimate the pixel coverage

np “
0.223

p3.8 ˆ 10´3q2
« 15 400 pixels 2.0

Since there are other methods to estimate such quantity, the accepted range is

15300 ď np ď 15600 1.0

(c) (13 points) With an exposure time of t = 15 s, the astronomer obtains a signal-to-noise
ratio of S{N “ 225. Compute the brightness of the sky at the observation site, knowing
that the CCD has a readout noise (standard deviation) of 5 counts{pixel and dark noise of
6 counts{pixel{minute. Give your answer in mag{arcsec2. You may find useful: σ2

RON “

np ¨ 1 ¨ RON2 and σ2
DN “ np ¨ DN ¨ t.

Solution: The signal-to-noise ratio is given by the expression

S{N “
NGC

b

σ2
GC ` σ2

sky ` σ2
RON ` σ2

DN

“
NGC

a

NGC ` Nsky ` np ¨ RON2 ` np ¨ DN ¨ t
3.0
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where,
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

NGC Ñ Total Source Count

σGC “
a

NGC Ñ Poisson Noise
Nsky Ñ Total Sky Count
σsky “

a

Nsky Ñ Sky Noise

σRON “

b

np ¨ 1 ¨ RON2 Ñ Readout Noise

σDN “
a

np ¨ DN ¨ t Ñ Dark Noise

The noise values associated with the CCD operation can be easily calculated:
$

&

%

σ2
RON “ 15400 ˆ 52 “ 385000 counts

σ2
DN “ 15400 ˆ 6 ˆ

1

60
ˆ 15 “ 23100 counts 2.0

Now, the apparent visual magnitude of the globular cluster must be calculated,

VGC ´ mV “ ´2.5 log

ˆ

ΩGC

1

˙

with ΩGC being the solid angle subtended by the globular cluster,

ΩGC “ π ¨

ˆ

θ

2

˙2

“ π ˆ

ˆ

72.02

2

˙2

“ 4071.5 arcsec2 1.0

Hence,
VGC “ 20.6 ´ 2.5 log p4071.5q “ 11.6mag 1.0

and the associated flux of photons can now be evaluated using the 0-magnitude as a
reference:

VGC ´ V0 “ ´2.5 log

ˆ

φGC

φ0

˙

φGC “ φ0 ¨ 10´VGC{2.5

« 0.234 counts{nm{cm2{s 1.0

With the calculated parameters, the total source count is:

NGC “ η ¨ φGC ¨
π

4
¨ D2 ¨ ∆λ ¨ t

NGC “ 0.80 ˆ 0.234 ˆ
π

4
ˆ p30.5q2 ˆ 88.0 ˆ 15

“ 180 540 counts 1.0

By referring to the signal-to-noise ratio expression and substituting the values,

225 “
180540

a

180540 ` Nsky ` 385000 ` 23100

Nsky “

ˆ

180540

225

˙2

´ 385000 ´ 180540 ´ 23100

Nsky “ 55250 counts 1.0
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The inverse procedure to determine the Total Source Count is taken:

φsky “
Nsky

η ¨ π
4 ¨ D2 ¨ ∆λ ¨ t

“
55250

0.80 ˆ π
4 ˆ 30.52 ˆ 88.0 ˆ 15

φsky “ 7.16 ˆ 10´2 counts{nm{cm2{s 1.0

which implies

Vsky “ V0 ´ 2.5 log

ˆ

φsky

φ0

˙

“ 12.9mag 1.0

and finally, since Ωsky “ ΩGC

msky “ Vsky ` 2.5 log

ˆ

Ωsky

1

˙

“ 12.8 ` 2.5 log p4071.5q

msky “ 21.9mag{arcsec2 1.0

Considering the accepted range of pixels from the previous item, the accepted answers
for the brightness of the sky fall within the interval

21.7 ď msky ď 22.1mag{arcsec2

(T7) Castaway (20 points)
After surviving a shipwreck and reaching a small island in the southern hemisphere, a sailor had
to estimate the island’s latitude using the Sun.
However, due to a poor eyesight, the sailor couldn’t see the night stars very well, so his best
option was to rely on the Sun. He had no information about the date, but he realized the days
were longer than the nights.
(a) (7 points) The sailor noticed that on his first day on the island, the angle between the

positions of the sunrise and the sunset on the horizon was 120˝. With this piece of infor-
mation, determine the range of possible values for the latitude of the island. Neglect the
daily motion of the Sun across the ecliptic.

Solution:
The first step is to find an expression for the azimuth of an object during sunrise:
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Using the law of cosines:

cosp90˝ ` δq “ cosp90˝ ´ aq cosp90˝ ` φq ` sinp90˝ ´ aq sinp90˝ ` φq cosp180˝ ´ Aq

6 ´ sinpδq “ ´ sinpaq cospφq ´ cospaq cospφq cospAq

Since the altitude a “ 0˝ at the sunrise:

cospφq “
sinpδq

cospAq
2.0

Note that due to symmetry over the local meridian, the azimuth of sunrise corresponds
to 180˝ minus half of the angle given in the question statement (the 180˝ term comes
from the fact that the observer is on the southern hemisphere).
The scenarios that lead to the minimum and maximum values of latitude correspond to
the extreme values for the declination of the Sun in the southern hemisphere summer
(´23.5˝ and 0˝).
If the declination of the Sun is ´23.5˝, the latitude has to be

cospφq “
sinp´23.5˝q

cos
`

180˝ ´ 120˝

2

˘

cospφq “ ´2 sinp´23.5˝q

φ “ ´37.1˝ 2.0

Only the negative solution of this equation is relevant in this case since the observer is
in the southern hemisphere.
If the declination is the Sun is 0˝, simply plugging in this value to the formula will
result in a latitude of ´90˝. Since celestial objects do not rise or set at the poles, this
approach would not be conceptually correct. However, at a point infinitesimally close
to the pole, the Sun would still mathematically rise and set, and it would be possible to
achieve the difference in azimuth from the problem statement with a declination very

13



Page 14 of 38 Theoretical Round

close to 0˝. Thus, although a latitude of ´90˝ is impossible, any latitude infinitesimally
close to it would still mathematically be possible.
Therefore, the range of possible latitudes for the island is the following:

´90˝ ă φ ď ´37.1˝ 3.0

(b) (13 points) The angle between positions of the sunrise and the sunset kept increasing
daily. After 40 days, this angle was equal to 163˝. Estimate the latitude of the island. You
may neglect the eccentricity of the Earth’s orbit.

Solution:
Since the latitude is constant, the following expression must be true:

cospφq “
sinpδ0q

cospA0q
“

sinpδ40q

cospA40q
2.0

It is also possible to apply the law of sines to the following triangle to derive another
expression for the declination of the Sun on each day:

1.0

sinpθ0q

sinp90˝q
“

sinp´δ0q

sinpεq

sinpδ0q “ ´ sinpθ0q sinpεq

Analogously:

sinpθ40q

sinp90˝q
“

sinp´δ40q

sinpεq

sinpδ40q “ ´ sinpθ40q sinpεq 1.0

Combining the three previous expressions:
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sinpδ0q “
sinpδ40q cospA0q

cospA40q

´ sinpθ0q sinpεq “
´ sinpθ40q sinpεq cospA0q

cospA40q

sinpθ0q “
sinpθ40q cospA0q

cospA40q

sinpθ0q “ k sinpθ40q 2.0

Where k “
cospA0q

cospA40q
“

cosp120˝q

cosp98.5˝q
“ 3.38.

In order to replace one variable and solve for θ0, it is possible to consider that the
angular velocity of the Sun on the Ecliptic is approximately constant due to the Earth’s
very low eccentricity. In that case, the following expression must be true:

θ40 “ θ0 ´
40

Tyear
ˆ 360˝

θ40 “ θ0 ´ β 2.0

Where β “
40

Tyear
ˆ 360˝ “ 39.4˝. Combining the expressions and solving for θ0:

sinpθ0q “ k sinpθ0 ´ βq

sinpθ0q “ k psinpθ0q cospβq ´ sinpβq cospθ0qq

sinpθ0qpk cospβq ´ 1q “ k sinpβq cospθ0q

6 tanpθ0q “
k sinpβq

k cospβq ´ 1
“

3.38 sinp39.4˝q

3.38 cosp39.4˝q ´ 1

θ0 “ 53.1˝ 3.0

Solving for δ0:

sinpδ0q “ ´ sinpθ0q sinpεq

δ0 “ ´18.6˝ 1.0

Solving for the latitude of the island:

cospφq “
sinpδ0q

cospA0q
“

sinp´18.6˝q

cos
`

180˝ ´ 120˝

2

˘

φ “ ´50.4˝ 1.0

Note that only the negative solution to the equation above is relevant since it is known
that the island is in the southern hemisphere.

(T8) Binary Hardening (25 points)
Consider a binary system of black holes with equal masses M separated by a distance a, revolving
around their common center of mass (CM) in circular orbits. This binary moves against a very
large, uniform field of stars (each of mass m ! M) with number density n, interacting with them.
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Consider a star that approaches the system from infinity with speed v and impact parameter b,
in the reference frame of the CM (as shown in the figure below). Its closest approach distance
to the CM is rp « 1

2a. For tasks (a) and (c), you should make use of the fact that v2 ! GM
a .

Figure 1: Diagram of the system

(a) (5 points) Obtain an expression for b, in terms of M , a, v, and physical constants. In this
task, assume that the star interacts with the binary as if its total mass was fixed at the
CM.

Solution: Let vp be the closest approach velocity of the star. From conservation of
mechanical energy:

´
GMTm

rp
`

1

2
mv2p “

1

2
mv2 2.0

where MT “ 2M is the total mass of the binary. From conservation of angular mo-
mentum, we obtain vp:

vp “
b

rp
v 2.0

setting rp « a{2 and inserting vp into the first equation, we solve for b:

b “ a

c

1

4
`

2GM

av2

b «

?
2GMa

v
1.0

Where we have used v2 ! GM{a in the last step.

After a complex interaction with the binary, the star is slingshot from the system. The exact
calculation of its ejection speed is complex, but the result can be estimated by considering that
the star only interacts with one of the components when near the system. As such, consider, in
part (b), only the gravitational interaction between the star and one of the components in the
binary.
(b) (6 points) The star approaches the component with an initial speed negligible compared

to the component’s orbital speed, and both are moving directly towards each other. After

16
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interacting with the system, when the star is again far away from the black hole, we find
that the direction of its velocity vector is inverted and the final speed is vf . Determine vf ,
in terms of M , a and physical constants. Assume that linear momentum and mechanical
energy are conserved and that it takes place in a timescale much smaller than the binary’s
period. Recall that m ! M .

Solution: The speed of the black hole in circular orbit can be found by equating the
gravitational force to the centripetal net force:

GM2

a2
“

MV 2

a
2

6 V “

c

GM

2a
1.0

For the rest of the problem, we propose two different solutions:
Solution I:
Additionally, Let vf be the ejection speed of the star, and V 1 the final speed of the
black hole. To find vf , we use conservation of linear momentum and conservation of
mechanical energy for the two bodies:

MV “ MV 1 ` mvf 1.5
1

2
MV 2 “

1

2
mv2f `

1

2
MV 12 1.5

1

2
MV 2 “

1

2
mv2f `

1

2
M

´

V ´
m

M
vf

¯2

0 “ v2f ´ 2V vf `
m

M
v2f

Since m ! M 1.0, we neglect the last term, yielding:

vf “ 2V “

c

2GM

a
1.0

Because we are considering two moments where the distance between the star and the
black hole is very large, we disregard potential energy terms.
Solution II:
In the reference frame of the component, the star approaches the component with a
velocity ´~V . 1.5
And, since mechanical energy and linear momentum are conserved, it can be shown that
relative speed between the components is the same before and after the interaction–
that is, restitution coefficient equal to unity). Furthermore, since M " m, the velocity
of the component can be considered unchanged (notice this is not valid in Solution I,
as there we deal with second order terms arising from energy considerations) in the
interaction. Therefore, after the interaction, the star is ejected back with a velocity
~v1
f “ ~V in the opposite direction. 1.5

To return to the CM frame, we write ~vf “ ~v1
f ` ~V , such that

vf “ 2V 2.0

As we have previously found.

17
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For the following task, assume that all stars approaching the system from infinity with an impact
parameter 1

2b0 ď b ď 3
2b0 (where b0 is the impact parameter of a star whose speed at infinity is

v0) attain a closest-approach distance rp « 1
2a to the CM. Also assume that all stars exit

the system with the speed found in (b).
(c) (14 points) Upon each encounter, part of the total energy of the binary is lost as kinetic

energy acquired by a star. Assume that the binary orbit remains circular. Knowing this,
using your results from previous tasks and taking into account only encounters with the
stars within the specified range of impact parameters, show that the reciprocal of the
binary’s separation increases at a constant rate:

d
dt

ˆ

1

a

˙

“ H
Gρ

v0

Here, ρ “ nm is the mass density of the star field, and G the universal gravitational
constant. Find the dimensionless constant H, which refers to hardening.

Solution: First, we know the kinetic energy acquired by a star during an encounter:

∆K˚ “
1

2
mv2f ´

1

2
mv2 «

GMm

a
1.0

Where we used that v2 is negligible with respect to v2f , since v2f “ 2GM
a , and v2 !

GM{a. This is also the energy lost by the binary during an encounter.
In order to find the rate of energy extraction, we must first obtain the rate of encounters,
which can be estimated as follows:
imagine the binary travelling with velocity v in the reference frame of a far away star
of impact parameter b. During a small interval dt, all the stars included inside the
annular cylinder of length L “ vdt bounded by radii of b and b ` db will interact with
the star. Call this number of stars dN . It is given by:

dN “ n ¨ Vcylinder

“ n ¨ Aannulus ¨ L

“ n ¨ π ¨ rpb ` dbq2 ´ b2s ¨ v ¨ dt
« 2πn b v db dt 4.0

Defining dφ ” dN
dt to be the rate of encounters with stars of impact parameter between

b and b ` db and using b from part (a),

dφ “ 2πn b v db

“ 2πn ¨

?
2GMa

�v
¨ �v ¨ db

dφ “ 2πn
?
2GMa ¨ db 1.0

To find the total rate of encounters (φ “
ř

dφ), we sum over all impact parameters in
the interval 1

2b0 ď b ď 3
2b0. Notice

ř

db “ 3
2b0 ´ 1

2b0 “ b0, so that:

φ “ 2πn
?
2GMa ¨

ÿ

db

“ 2πn
?
2GMa ¨

?
2GMa

v0

“
4πnGMa

v0
3.0
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Since each encounter takes away ∆K˚ and there are φ encounters per unit time, the
rate of change of energy for the binary is:

dEbin

dt
“ p´∆K˚q ¨ φ “ ´

4πnG2M2m

v0
2.0

A change in the binary total energy can also be written as:

dEbin

dt
“

d
dt

ˆ

´
GM2

2a

˙

“ ´
GM2

2

d
dt

ˆ

1

a

˙

2.0

Therefore. equating the two:

d
dt

ˆ

1

a

˙

“
8πGnm

v0

d
dt

ˆ

1

a

˙

“ 8π
Gρ

v0
1.0

Thus, H “ 8π

(T9) Physics of Accretion (35 points)
The accretion of matter onto compact objects, such as neutron stars and black holes, is one of
the most efficient ways to produce radiant energy in astrophysical systems. Consider an element
of gas of mass ∆m in a stationary and geometrically thin disk of matter with a maximum radius
of Rmax and minimum stable orbital radius of Rmin (with Rmin{Rmax ! 1), in rotation around
a compact object of mass M and radius R.
(a) (6 points) Assuming that an element of gas in the disk follows an approximately Keplerian

circular orbit, find the expression of the total mechanical energy per unit of mass ∆E
∆m

released by this gas from the moment it starts orbiting at a radius Rmax until the moment
it reaches an orbit of radius r ! Rmax. This process occurs very slowly, transforming
kinetic energy into internal energy of the gas disk through viscous dissipation.
Note: Disregard the gravitational interaction between particles within the accretion disk
and give your final answer in terms of G, M and r

Solution: For a Keplerian orbit:

∆m
v2k
r

“
GM∆m

r2
ñ v2k “

GM

r
2.0

Total energy:

E “ Ekin ` Epot ñ Eprq “
1

2
∆mv2k ´

GM∆m

r
ñ Eprq “ ´

1

2

GM∆m

r
2.0

EpRmaxq ´ Eprq “
1

2
GM∆m

ˆ

1

r
´

1

Rmax

˙

“
GM∆m

2r

ˆ

1 ´
r

Rmax

˙

«
GM∆m

2r
1.0

Therefore:
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∆E

∆m
«

GM

2r
1.0

(b) (5 points) Considering that the disk receives mass at an average rate of 9M , and assuming
that all the mechanical energy lost is ultimately converted into radiation, find an expression
for the total luminosity of the disk.

Solution: Variation in energy:

∆ETot “ EpRmaxq ´ EpRminq

Luminosity:

LTot “
∆ETot

∆t
“

∆ETot

∆m
ˆ 9M 3.0

LTot “
GM 9M

2Rmin
2.0

Where the result from (a) was used, allied with Rmin ! Rmax.

(c) (8 points) Consider now the ring composed of all mass elements from radius between r`∆r
to r. In this scenario, find an expression of the luminosity generated by the disc over its
small length ∆r at this radius, that is, find the expression for ∆E

∆t∆r .

Solution: Variation in the energy of the tiny mass:

∆E “ Epr ` ∆rq ´ Eprq “
1

2
GM∆m

ˆ

1

r
´

1

r ` ∆r

˙

«
1

2
GM∆m

ˆ

∆r

r2p1 ` ∆r{rq

˙

ñ
∆E

∆m
«

1

2
GM∆r

1

r2
5.0

Multiplying this expression by the rate of mass variation per time, it is possible to
obtain an expression for ∆E

∆t∆r :

∆E

∆t
“

∆E

∆m
ˆ 9M “

GM 9M∆r

2r2

ñ
∆E

∆t∆r
“

GM 9M

2r2
3.0

(d) (10 points) Assuming that the gravitational energy released in this ring is locally emitted
by the surface of the ring in the form of blackbody radiation, find an expression for the
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surface temperature T of the ring.

Solution: Surface area of the ring:

A “ 2rπpr ` ∆rq2 ´ πr2s “ 2pπr2 ` 2πr∆r ` π∆r2 ´ πr2q 4.0

ñ A « 4πr∆r

Using Stefan-Boltzmann’s law:

AσT 4 “ L 2.0

4πr∆rσT 4 “
∆E

∆t
ñ 4πrσT 4 “

∆E

∆r∆t
2.0

4πrσT 4 “
GM 9M

2r2

ñ T “

˜

GM 9M

8πσr3

¸1{4

2.0

(e) (3 points) Consider that the central object is a stellar black hole with a mass of 3Md and
a rate of accretion of 9M “ 10´9 Md{year. Consider also that Rmin “ 3Rsch, where Rsch

is the Schwarzschild radius of the black hole. Determine the luminosity of the disk and
the peak wavelength of emission of its innermost part. Disregard gravitational redshift
effects and assume that the emission from the innermost part of the ring dominates the
total emission.

Solution: Internal radius of the ring:

Rsch “
2GM

c2
ñ Rmin “ 3Rsch “

6GM

c2

Rmin “
6GM

c2
“

6 ¨ 6.674 ¨ 10´11 ¨ 3 ¨ 1.988 ¨ 1030

p2.998 ¨ 108q2
“ 2.7 ˆ 104m

Total luminosity:

LTot “
GM 9M

2Rmin
“

9Mc2

12

ñ LTot “
10´9 ¨ 1.988 ¨ 1030 ¨ p2.998 ¨ 108q2

12 ¨ 365.2422 ¨ 24 ¨ 60 ¨ 60

ñ LTot “ 5 ˆ 1029 W 1.5
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Surface temperature:

T “

˜

GM 9M

8πσR3
min

¸1{4

“

ˆ

6.674 ¨ 10´11 ¨ 3 ¨ 10´9 ¨ p1.988 ¨ 1030q2

8π ¨ 5.670 ˆ 10´8 ¨ p2.7 ¨ 104q3 ¨ 365.2422 ¨ 24 ¨ 60 ¨ 60

˙1{4

T “ 5.5 ˆ 106 K

Using Wien’s law:

λ “
b

T
“

2.898 ¨ 10´3

5.5 ¨ 106

ñ λ “ 5 ˆ 10´10 m 1.5

(f) (3 points) Now, considering another accretion system with 9M “ 1 Md{year and peak
wavelength of emission is λ “ 6 ˆ 10´8 m, estimate the mass of this black hole.

Solution: Using Wien’s law:

λ “
b

T
ñ T “

b

λ
“

2.898 ¨ 10´3

6 ˆ 10´8

ñ T “ 4.8 ¨ 104 K 1.0

Considering this temperature to be that of the innermost of the accretion disk, and
using Rmin “ 3Rsch:

T “

˜

GM 9M

8πσR3
min

¸1{4

ñ T 4 “

˜

GM 9M

8πσp3Rschq3

¸

“

˜

GM 9M

8πσp6GM{c2q3

¸

ñ M “

˜

9M

8πσ63

¸1{2
c3

GT 2

ñ M “
1

p8πq1{2

1

63{2

"

1.988 ¨ 1030{p3.15 ¨ 107q

5.670 ¨ 10´8

*1{2
p2.998 ¨ 108q3

6.674 ¨ 10´11 ¨ p4.8 ¨ 104q2

M « 2.5 ˆ 1039 kg « 1.3 ˆ 109 Md 2.0
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Long Questions

(T10) Greatest Eclipse (75 points)
The greatest eclipse is defined as the instant when the axis of the Moon’s shadow cone gets
closest to the center of the Earth in a solar eclipse. This problem explores the geometry of
this phenomenon, using as an example the solar eclipse of May 29th, 1919, which has a great
historical significance for being the first time when astronomers were able to observationally
verify general relativity. One of the scientific expeditions to observe this eclipse took place in
the Brazilian city of Sobral.
The two following tables show the Cartesian and spherical coordinates of the Sun and the Moon
at the time of the greatest eclipse. The system used for these coordinates is right-handed and
has the origin at the center of the Earth, the positive x-axis pointing towards the Greenwich
meridian, and the positive z-axis pointing towards the North Pole. For the rest of this problem,
this will be referred to as system I.
Spherical coordinates:

Center of the Sun Center of the Moon
Radial Distance (r) 1.516 ˆ 1011 m 3.589 ˆ 108 m

Polar Angle (θ) 68˝29144.12 68˝47141.62

Azimuthal Angle (ϕ) ´1h11m28.2s ´1h11m22.9s

Cartesian coordinates:

Center of the Sun Center of the Moon
x 1.342 ˆ 1011 m 3.185 ˆ 108 m
y ´4.327 ˆ 1010 m ´1.025 ˆ 108 m
z 5.557 ˆ 1010 m 1.298 ˆ 108 m

For this problem, assume that the Earth is a perfect sphere.

Note: The spherical coordinates of a point P are defined as follows:

• Radial distance (r): distance between the origin (O) and P (range: r ě 0).
• Polar angle (θ): angle between the positive z-axis and the line segment OP (range: 0˝ ď

θ ď 180˝)
• Azimuthal angle (ϕ): angle between the positive x-axis and the projection of the line

segment OP onto the xy-plane (range: ´12h ď ϕ ă 12h)
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Part I: Geographic Coordinates (25 points)
(a) (3 points) Determine the declination of the Sun and the Moon during the greatest eclipse

for a geocentric observer.

Solution: The declination is simply the complement of the polar angle:

δ “ 90˝ ´ θ 1.0
6 δd “ 21˝30115.92 1.0
δMoon “ 21˝12118.42 1.0

(b) (3 points) Determine the right ascension of the Sun and the Moon at the time of the
greatest eclipse for a geocentric observer. The local sidereal time at Greenwich at that
same moment was 5h32m35.5s.

Solution: The local sidereal time at Greenwich corresponds by definition to the merid-
ian of right ascension that is right above Greenwich. Since Greenwich corresponds to
an azimuthal angle of 0h, the right ascension at any given point corresponds simply to
the sum of the local sidereal time at Greenwich and the azimuthal angle:

α “ ϕ ` LSTGreenwich 1.0
6 αd “ 4h21m7.3s 1.0
αMoon “ 4h21m12.6s 1.0

(c) (4 points) Find a unit vector that indicates the direction of the axis of the Moon’s shadow
cone. This vector should point from the Moon to the vicinity of the center of the Earth.
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Solution: By subtracting the Cartesian coordinates of the Sun from the Cartesian
coordinates of the Moon, it is possible to obtain a vector for the direction of the axis
of the Moon’s shadow cone: 1.0

~u “ă ´1.339 ˆ 1011, 4.317 ˆ 1010, ´5.544 ˆ 1010 ą m 1.0
|~u| “ 1.512 ˆ 1011 m 1.0

6 û “ă ´0.8855, 0.2855, ´0.3667 ą 1.0

(d) (15 points) Determine the latitude and the longitude of the point where the axis of the
Moon’s shadow cone crosses the surface of the Earth during the greatest eclipse.

Solution: If one draws a vector in the same direction as û upto the earth’s surface,
then its magnitude can be found by the formula, where M is the position vector of the
Moon, k is a constant, and R‘ is the radius of the Earth:

| ~M ` kû|2 “ R2
‘ 5.0

Solving for k:

0 “ k2pû ¨ ûq ` 2kpû ¨ ~Mq ` ~M ¨ ~M ´ R2
‘

“ k2 ` 2kpû ¨ ~Mq ` | ~M|2 ´ R2
‘

Now, | ~M|2 ´ R2
‘ “ 1.288 ˆ 1017 m

2pû ¨ ~Mq “ ´7.178 ˆ 108 m

6 0 “ k2 ´ kp7.178 ˆ 108q ` p1.288 ˆ 1017q

k “
7.178 ˘

a

p´7.178q2 ´ 4 ˆ 12.88

2
ˆ 108

The vector will intersect the earth’s surface at two points. Hence two solutions. How-
ever, only the first intersection with the sphere is relevant in this case, so only the
smallest solution to the equation should be considered:

k “
7.178 ´

a

p´7.178q2 ´ 4 ˆ 12.88

2
ˆ 108

“ 3.528 ˆ 108 4.0

The vector of location of the greatest eclipse corresponds to the position vector of the
Moon plus k times the direction vector û:

~p “ ~M ` kû
“ă 6.091 ˆ 106, ´1.828 ˆ 106, 4.854 ˆ 105 ą 2.0

It is possible to use the following expressions to convert this vector to the spherical
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system:

r “
a

x2 ` y2 ` z2

“ 6.378 ˆ 106 m

θ “ arctan

˜

a

x2 ` y2

z

¸

(valid for z ą 0)

“ 1.495 rad “ 85˝381

ϕ “ arctan
´y

x

¯

(valid for x ą 0)

“ ´0.2915 rad “ ´16˝421 2.0

The latitude corresponds to the complement of the angle θ, and the longitude corre-
sponds to the angle ϕ:

4˝221N, 16˝421W 2.0

Part II: Duration of the Totality (50 points)
Precisely determining the duration of the totality of a solar eclipse involves complex calculations
that would be beyond the scope of this problem. However, it is possible to obtain a reasonable
approximation for this value using the two following assumptions:

• The size of the umbra on the surface of the Earth remains roughly constant throughout the
totality for a given location.

• The velocity of the umbra on the surface of the Earth remains roughly constant throughout
the totality for a given location.

(e) (10 points) Estimate the radius of the umbra during the greatest eclipse. In order to
simplify the calculations, assume that the umbra is small enough that it can be considered
approximately flat and that the axis of the Moon’s shadow cone is extremely close to the
center of the Earth during the greatest eclipse.

Solution: The approximate geometry described in the problem statement is shown
below:

3.0
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The angle β can be calculated as follows:

β “ arccos
ˆ

Rd ´ RMoon

dd ´ dMoon

˙

“ arccos
ˆ

6.955 ˆ 108 ´ 1.737 ˆ 106

1.516 ˆ 1011 ´ 3.589 ˆ 108

˙

“ 89.74˝ 3.0

Using this angle, it is possible to determine the radius of the the umbra:

rumbra “
RMoon ´ pdMoon ´ R‘q ¨ cospβq

sinpβq
3.0

rumbra “ 1.196 ˆ 105 m 1.0

(f) (3 points) Calculate the velocity of the Earth’s rotation at the latitude of the center of the
umbra.

Solution: The Rotational velocity of the Earth at the latitude of the center of the
umbra is the following:

vrot “
2πR‘

23h56m04s
cospφumbraq

“
2π ˆ 6.378 ˆ 106

23h56m04s
cosp4˝221q 2.0

vrot “ 463.7m{s 1.0

(g) (4 points) Determine the orbital velocity of the Moon at the instant of the greatest eclipse.
Neglect the changes in the semi-major axis of the Moon’s orbit.

Solution: Using the vis-viva equation:

vMoon “

d

GM‘

ˆ

2

dMoon
´

1

aMoon

˙

2.0

“

d

6.674 ˆ 10´11 ˆ 5.972 ˆ 1024
ˆ

2

3.589 ˆ 108
´

1

3.844 ˆ 108

˙

vMoon “ 1088m{s 2.0
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For the remaining items of this problem, assume that the tangential velocity of the Moon is
roughly the same as the orbital velocity and redneglect its radial component.
In order to calculate the velocity of the umbra, it is convenient to define two new additional
right-handed coordinate systems. System II is defined as follows:

• Origin (OII): position of the Moon at the instant of the greatest eclipse.
• Positive x-axis: Tangent to the declination circle. Points eastwards.
• Positive y-axis: Tangent to the meridian of right ascension. Points northwards.

System III is defined as follows:
• Origin (OIII): center of the umbra at the instant of the greatest eclipse.
• Positive x-axis: Tangent to the latitude circle. Points eastwards.
• Positive y-axis: Tangent to the meridian of longitude. Points northwards.

Note that in both systems, the xy-plane is tangent to the celestial sphere at the position of the
origin.
System III is similar to system II, with the only difference being that the origin (OIII) is at
the center of the umbra at the moment of the greatest eclipse.
(h) (14 points) Using system II, determine the velocity vector of the Moon during the greatest

eclipse. Note that the intersection between the Celestial Equator and the lunar orbit that
is closer to the position of the eclipse has a right ascension of 23h07m59.2s.

Solution: It is possible to use the following diagram to determine the value of the
angle κ between the x-axis and the velocity vector of the Moon:

6.0

Note that the great circle that intersects the Moon’s meridian of right ascension at a
right angle has a tangent line that coincides with the x-axis, so the angle κ on the
figure is also the angle between the velocity vector of the Moon and the x-axis. Also
note that the Moon is moving from west to east in the celestial sphere (to the left in
the figure), so its velocity vector is on the first quadrant of the xy-plane on this system.
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Using the four parts formula:

cospδMoonq cosp90˝q “ sinpδMoonq cotpαMoon ` 24h ´ αintersectionq

´ sinp90˝q cotp90˝ ´ κq 3.0
6 0 “ sinpδMoonq cotpαMoon ´ αintersectionq ´ tanpκq

tanpκq “
sinpδMoonq

tanpαMoon ´ αintersectionq

κ “ arctan
„

sinpδMoonq

tanpαMoon ´ αintersectionq



“ arctan
„

sinp21˝12118.42q

tanp4h21m12.6s ´ 23h07m59.2sq



κ “ 4˝171 2.0

Now it is possible to break down the velocity of the Moon into the x and y components:

vII “

»

–

vMoon cospκq

vMoon sinpκq

0

fi

fl “

»

–

1085m{s
81.25m{s

3.00

fi

fl

The radial component of the velocity was neglected, so the velocity on the z-axis is
equal to zero.

(i) (10 points) Write the velocity vector of the Moon in system III. Note that in system I, the
azimuthal angle difference between the positions of the origins OII and OIII is negligible, so
you should only take into account the difference in the polar angles.

Solution: It is possible to obtain system III by rotating system II from north to
south by an angle of θumbra ´ θMoon around the x-axis. The angles θumbra and θMoon

correspond to the polar angles of the umbra and the Moon on system I.
The following two figures illustrate this rotation.

3.0Since the rotation is around the x-axis, the x component remains unchanged. The
component that was originally in the y-axis is broken down into two components on
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the y-axis and the z-axis of the new system, which results in the following vector:

vIII “

»

–

vMoon ¨ cospκq

vMoon ¨ sinpκq ¨ cospθumbra ´ θMoonq

6.0´ vMoon ¨ sinpκq ¨ sinpθumbra ´ θMoonq

fi

fl

vIII “

»

–

1085m{s
77.76m{s

1.0´ 23.54m{s

fi

fl

(j) (6 points) Calculate the speed of the center of the umbra along the surface of the Earth at
the instant of the greatest eclipse.

Solution: The velocity of the umbra corresponds to the vector sum of the component
caused by the rotation of the Earth and the component caused by the velocity of the
Moon.
Note that all points on the axis of the Moon’s shadow cone have the same velocity, vIII

is also the velocity of the axis of the Moon’s shadow cone at the center of the umbra.
Since the umbra moves along the surface of the Earth, so the zIII -component should
be set to zero.

vumbra “

»

–

vIII,x ´ vrot
vIII,y
0

fi

fl “

»

–

1085 ´ 463.7
77.76
0

fi

fl “

»

–

621.4m{s
77.59m{s

4.00

fi

fl

The modulus of this vector is the following:

vumbra “ |vumbra| “
a

621.42 ` 77.762 “ 626.3m{s 2.0

(k) (3 points) Estimate the duration of the totality of the eclipse at the location with the
coordinates found on item (d).

Solution: Considering the assumptions listed at the beginning of part II, it is possible
to estimate the length of the totality by dividing the diameter of the umbra by its
speed:

∆ttotality “
2 ¨ rumbra

vumbra
“

2 ˆ 1.196 ˆ 105

626.3
2.0

∆ttotality “ 6min21.4s 1.0

(T11) Ground Tracks (75 points)
The projection of a satellite’s orbit onto the Earth’s surface is called its ground track. At a
given instant, one can imagine a radial line drawn outward from the center of the Earth to the
satellite. The intersection between the Earth’s spherical surface and such radial line is a point
on the ground track.
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The location of this point is specified by its geocentric latitude and longitude. The ground track
is then essentially the figure traced by this point as the satellite moves around the Earth.
Part I: Sun-Synchronous Orbits (25 points)
It is particularly interesting to analyze the ground track of a so-called Sun-Synchronous orbit,
which is a nearly polar orbit around a planet where the satellite passes over any given point on
the planet’s surface at the same mean local solar time. This property is especially interesting
for satellite imaging, ensuring similar illumination conditions over different days.
The figure below shows the ground track of a satellite in a Sun-Synchronous orbit. Its inclination
angle (i) - the angle between the satellite orbital plane and the Earth’s equatorial plane - falls
within the range 90˝ ă i ă 180˝. The graph depicts five complete orbits of the satellite.

Figure 2: Ground Track for five orbits of the satellite

For the questions in Part I, assume that the Earth’s orbit around the Sun to be circular.
(T11) (a) (3 points) Determine the nodal precession rate for a Sun-Synchronous orbit in rad/s.

Solution: Since the orbit is Sun-Synchronous, this means that the satellite’s line of
nodes must drift 360˝ along one sidereal year. This ensures that the satellite will always
pass over a given meridian at the same local mean solar time. Hence, 1.0

9Ω “
360˝

Ts
“

2π

365.2564 ¨ 24 ¨ 60 ¨ 60
“ 1.991 ¨ 10´7 rad{s 2.0

(b) (8 points) Based on the ground track of Figure 2, determine the inclination of the satellite’s
orbit (in degrees) and estimate its orbital period (in minutes). Consider that the orbital
period of the satellite is shorter than one sidereal day.

Solution: After one orbit, the difference in longitude perceived by the satellite on the
ground track is associated with the combined effects of the rotation of the Earth and
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nodal precession. This is expressed by

λ2 “ λ1 ´ ω‘ ¨ T ` 9Ω ¨ T 2.0

From the Ground Track, λ1 “ 90˝ and λ2 « ´135˝ for five orbits. Therefore, knowing
the value of ω‘, the angular velocity of the rotation of our planet,

T “
1

5
¨
λ1 ´ λ2

ω‘ ´ 9Ω
“

1

5
¨

225˝ ¨ π{180˝

7.292 ¨ 10´5 ´ 1.991 ¨ 10´7
« 10800 s “ 180 min 2.0

Although 9Ω is significantly smaller than ω‘, it is conceptually important to include
the nodal precession rate in the formula.
The inclination of the orbit can be obtained directly from the Ground Track. Taking
any of the two points of the orbit with the largest (absolute) value of latitude, one finds

|φmax| « 55˝ 2.0

Since i ą 90˝, |φmax| is the supplementary angle of the inclination:

i “ 180˝ ´ 55˝ “ 125˝ 2.0

(c) (2 points) Estimate the semi-major axis a of the orbit in km.

Solution: Having calculated the period associated with the orbit, the semi-major axis
is directly obtained from

T 2

a3
“

4π2

GM‘

ùñ a “

ˆ

T 2GM‘

4π2

˙1{3

“ 1.06 ¨ 104 km 2.0

(d) (1 point) Determine the number of orbits completed by the satellite until it returns to the
same position on Earth.

Solution: Since the orbit is sun-synchronous, the satellite completes an integer number
of orbits during one solar day. Hence,

NS “
24 ¨ 60

180
“ 8 orbits 1.0

(e) (11 points) As it can be seen in Figure 2, the ground track crosses the Brazilian city of
Maceió pφ, λq “ p9.7˝S; 35.7˝W q and also Chorzów pφ, λq “ p50.3˝N ; 19.0˝Eq, in Poland.
Knowing that the ground track crosses Maceió at noon (local time), determine the local
time that the satellite track crosses Chorzów. Hint: specifically for this task, you may
neglect the effects of nodal precession.

Solution: The satellite takes more than 2 orbits and less than 3 orbits to go from
Poland to Brazil. Using as reference the point Po ahead of Maceió that is exactly 3
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orbits after Chorzów,

λo “ λC ´ 3 ¨ 45˝

φ0 “ φC

Using sine law in the following spherical triangle,

sin θ “
sinφ

sinp180˝ ´ iq
2.0

θ0 “ arcsin

ˆ

sinφo

sin i

˙

“ 69.9˝

θM “ arcsin

ˆ

sinφM

sin i

˙

“ ´12.0˝

The angle the satellite traveled will depend on how many complete orbits it took and
the angle from the final whole orbit to Maceió:

∆θ “ n ¨ 360˝ ´ pθ0 ´ θM q 3.0

by the graph, n “ 3, which results in ∆θ “ 998.1˝ 1.0knowing its orbit is circular,

∆t “ T ¨
∆θ

360˝
“ 8.32 h 1.0

The local time at Chorzów in which the satellite passes by will be, considering λM “

35.7˝W “ ´35.7˝,

TC “ TM ´ ∆t`ω´1
‘ pλC ´ λM q 3.0

TC « 7h20min 1.0
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Part II: Tundra orbits (50 points)
A Tundra orbit is a type of geosynchronous elliptical orbit characterized by a high incli-
nation. The apogee is positioned over a specific geographic region, allowing for prolonged
visibility and coverage over that area. This orbit ensures that a satellite spends the major-
ity of its orbital period over the northern - or southern - hemisphere, making it particularly
useful for communications and weather observation over high-latitude regions.
The image below represents the ground track of a satellite in a Tundra orbit with an
argument of perigee equal to 270˝. The satellite orbits the Earth in the same direction of
its rotation. For the following items, you can disregard the effects of the Earth’s oblateness.

Figure 3: Tundra Orbit Ground Track for one orbital period

(f) (4 points) Based on the graph above, give the inclination of the satellite’s orbit i (in de-
grees), its orbital period T (in minutes) as well as its semi-major axis a (in km).

Solution: For the inclination, we need to take the maximum latitude reached by the
satellite, which gives us i “ 63˝ 1.0. For the period, we have to realize that in one orbit,
the Earth’s rotation does not cause a shift in the orbit, so it must be geosynchronous,
that is T “ T‘ “ 1436 min . For the semi-major axis, we apply Kepler’s Third Law: 1.0

a3

T 2
“

GM

4π2
Ñ a “ 42, 164 km 2.0

(g) (12 points) Show that the time the satellite spends in the northern hemisphere is given by

T 1 “

ˆ

1

2
`

sin´1
peq

π
`

e

π
¨
a

1 ´ e2
˙

T

where e is the eccentricity of the orbit and T is its orbital period.
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Solution: We will first find the expression for the area divided by the semi-latus
rectum as a function of eccentricity so then we can apply the Kepler’s Second Law to
find the required time. To do this, we will use the projection of the area of a circle
when it is inclined by an angle arccos

`

b
a

˘

, as shown in the figure below:

Thus, we will first calculate the hatched area of the circle figure Acircle

Acircle “ Asector ´ Atriangle “
θ

2π
¨ πa2 ´

ae ¨ b

2
4.0

We can also use that θ “ π
2 ´ α and α “ sin´1

peq. Therefore:

Acircle “

ˆ

π ¨ a2

4
´

sin´1
peq ¨ a2

2
´

ab ¨ e

2

˙

Now, we project this area,

Aellipse “ Acircle ¨
b

a

Aellipse “

ˆ

πab

4
´

sin´1
peq ¨ ab

2
´

b2e

2

˙

4.0

Thus, the area covered by the satellite’s position vector from one semi-latus rectum to
the other will be given by twice the area found above, as we can see from the image,
so that the area on the perigee side is given by

Aper “
πab

2
´ bpa sin´1

peq ` ebq

For the apogee side, it is enough to know that Aap “ πab´Aper, where πab is the area
of the whole ellipse. Therefore, we have:

Aap “
πab

2
` b

`

a sin´1
peq ` eb

˘

2.0
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Using Kepler’s Second Law, we can write:

Aap

Aellipse
“

T 1

T
2.0

Using that Aellipse “ πab and b “ a
?
1 ´ e2, we have:

T 1

T
“

1

2
`

sin´1
peq

π
`

e

π
¨
a

1 ´ e2

(h) (10 points) Estimate numerically the eccentricity e of its orbit. You can consider that the
eccentricity is so small that sinpeq « e and e2 ! 1.

Solution: Between the two consecutive passages through the semi-latus rectum, we
can use the following equation:

∆λ “ π ´ ω‘ ¨ T 1 2.0

Where ∆λ is the variation in longitude of the satellite between its passages through
the semi-latus rectum, as shown in the image below.

Therefore, we can write using the expression of the last item

∆λ ` ω‘ ¨ T ¨

ˆ

1

2
`

sin´1
peq

π
`

e

π
¨
a

1 ´ e2
˙

“ π

As ω‘ “ 2π
T (the orbit is geosynchronous), we will get:

∆λ ` 2 ¨ sin´1
peq ` 2e ¨

a

1 ´ e2 “ 0

sin´1
peq ` e ¨

a

1 ´ e2 “ ´
∆λ

2
2.0

Considering that ∆λ « ´67.5˝ 2.0from the graph (it is important to note that this
value should be negative by the figure), we find from the above formula, by iteration,
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e « 0.3 . If we use the approximations sinpeq « e and e2 ! 1 given in the statement,
we find:

2e “ ´
∆λ

2
3.0

which gives us an approximate answer e « 0.295 « 0.3 1.0

(i) (18 points) From the ground track, we can observe that the satellite exhibits a retrograde
motion in both its northern and southern hemisphere trajectories. Find the true anomaly
(in degrees) of the satellite at the beginning and end of its retrograde motion in the southern
hemisphere.

Solution: At the start and end points of retrograde motion, we have ωRA “ ω‘ 2.0,
where ωRA is the right ascension angular velocity of the satellite. To find this velocity,
we use the following spherical triangle:

where θ2 “ θ ´ 90˝, and it is known that:

cospθ2q “ cospδq cospαq (Cosine Law) 1.0

sinpθ2q

sinpαq
“

cospδq

cospiq
(Sine Law) 1.0

We substitute cospδq from the first expression into the second expression, obtaining:

sinpθ2q

sinpαq
“

cospθ2q

cospαq ¨ cospiq

tanpθ2q ¨ cospiq “ tanpαq

We then derive the above expression with respect to time - it is possible to skip the
derivative step by just decomposing the satellite’s angular velocity vector.
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cospiq

cos2pθ2q
9θ “

9α

cos2pαq
2.0

Using the Cosine Law expression to replace cospαq, we finally have:

ωRA “ 9α “
cospiq

cos2pδq
9θ 2.0

We can then calculate the value of 9θ as a function of the distance of the satellite from
the center of the Earth, using the conservation of angular momentum:

9θ “
2π

T

a2
?
1 ´ e2

r2
2.0

We still have the polar expression for the distance r as a function of the polar radius,
given by:

r “
ap1 ´ e2q

1 ` e ¨ cospθq
2.0

Substituting everything into the expression that gives the condition for the start or end
of retrograde motion, we find:

2π

T

p1 ` e cos θq2

p1 ´ e2q
3
2

cospiq

cos2pδq
“ ωearth “

2π

T

p1 ` e cos θq2

p1 ´ e2q
3
2

cospiq

cos2pδq
“ 1 2.0

From the graph, we find the latitude - or declination - of the start or end of retrograde
motion, given by δ « ´32˝. 2.0Thus, substituting all the variables into the above equation
and solving for θ, we find: θ “ 54˝ and θ “ 306˝ as solutions. 2.0

(j) (6 points) It is also noticeable that the ground track of a Tundra orbit has the shape of a
figure-8, similar to an analemma, so that the satellite passes over the same point on Earth
in a single orbit. Calculate the minimum eccentricity the orbit would need to have for this
property to cease occurring. Use the same orbital inclination from the orbit in Figure 3.

Solution: For the figure-8 shape not to form, we need the inversion of motion in the
northern hemisphere to occur exactly at the apogee position 2.0. Therefore, we will use
exactly the same expression as the previous item, but with θ “ 180˝ and eccentricity as
the unknown variable 1.0. For the value of δ, as the satellite is at the position of maximum
declination, δ “ i. We have:

p1 ´ eq2

p1 ´ e2q
3
2

1

cospiq
“ 1 2.0

Solving the above equation, we obtain: e « 0.4 1.0
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